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Quantum mechanics on graphs 
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Received 12 May 1994, in final form 28 July 1994 

Abstract We analyse the pmblem of one-dimensional quantum mechanics on arbitrary graphs 
as idealized models for quantum systems on spaces with non-hivial topologies. In panic& 
we argue that such models can be made to ac”modate the physical characteristics of 
wavefunctions on a nehvork of wires and offer several derivations of a panicular junction 
condition. Throughout we adopt a continuity condition for the wavefunction at each primitive 
node in the network. Results are applied to the problem of the energy specmm of a system 
containing one and infinitely many junctions. 

1. Introduction 

Quantum mechanics on networks of one-dimensional wires connected at nodes has been 
studied recently, either as a theoretical problem in its own right [l-31 or as a means of 
modelling mesoscopic solid-state systems [4,5]. The behaviour of the wavefunction at a 
node in a network of such wires is crucial to the determination of the energy spectrum 
and hence the physical behaviour of such a system. Most authors require Sturm-Liouville- 
type boundary condition to conserve probability flux at each node, although there is less 
agreement over whether the wavefunction should also be continuous there. 

Ruedenberg and Scherr [6] and very recently Avishai and Land [I] are amongst those 
who argue that continuity must be satisfied (A good review of the work up to 1988 is 
provided in sections III and IV of [7]). Exner and Seba [2,3] leave open the question 
of continuity, while Shapiro and others [S-IO] have analysed such systems using a beam 
splitter that destroys continuity. 

Wavefunction continuity and flux conservation alone are not sufficient to completety 
specify the properties of the wavefunction at a junction. Exner and Seba [3], using the Von 
Neumann theory of self-adjoint extensions of formal differential operators, have classified 
the various boundary conditions at a junction, while Kowal et al have examined the general 
form of the S-matrix for a beam splitter [ll]. 

In this paper we show that the assumption of wavefunction continuity at a node leads to a 
junction scattering matrix which is completely specified by a single, real, energy-dependent 
parameter, consistent with the findings of [3]. For such a junction condition, we show that 
the spectrum of a particle confined to a star-shaped region consisting of M wires joined at 
a single node with fixed end boundary conditions can be written in terms of this parameter. 
We further identify a recent result of Avishai and Luck [I] for the dispersion curve of an 
infinite array of ID wires as a special case of the above parametrization and generalize their 
result to an arbitrary junction, with wavefunction continuity. 

0305470/94M6881t12$1950 @ 1994 IOP Publishing Ltd 688 1 
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2. Properties of junctions 

Since we are interested in modelling particles confined to regions of space of arbitrary 
shape, we first discuss the hierarchy of approximations which we assume in order to render 
such a problem tractable. Our first assumption is to suppose that the confining forces arise 
as a result of a common uniform potential within each wire and that the surface of each 
wire coincides with a region where the potential experiences a sudden discontinuity. Thus 
the problem is simplified to that of solving for the stationary quantum states of a particle 
in a domain where such a potential is constant. Consider first the equation in a finite 
segment of such a wire. Although the wire may have curvature and torsion in space it 
is possible to express the Laplacian operator that features in the Schrijdinger equation in 
terms of a coordinate system defined by a moving (Frenet) frame centered on the curve 
whose locus defines the centroid of the wire. In such a coordinate system the wavefunction 
must accommodate the inertial forces induced by the contortions of the segment in space. 
However if the locus of the centroid of the wire has negligible extrinsic curvature and 
torsion over its length the Schrodinger equation can be made separable by passing to a 
non-inertial frame. In such an adapted coordinate system [12] the equation is the same as 
that for a free particle confined to a right cylindrical segment of space. Our next hypothesis 
is to concentrate our attention on the longitudinal behaviour of the wavefunction defined 
by the locus of the centroid of the cylinder. Thus we shall assume that the wavefunction 
is independent of radial and azimuthal coordinates within each right-cylindrical domain. 
For states with this symmetry the threedimensional Laplacian reduces effectively to a one 
dimensional one. Consequently the Schrtidinger equation reduces to a one-dimensional 
ordinary differential equation defined along the locus of the centroid. We shall persist 
with this truncation of the problem even in the vicinity of any junction between domains, 
where the untruncated problem becomes intractable. We are now in a position to model the 
junction conditions between different domains in terms of the behaviour of the truncated 
wavefunctions at the intersection of the loci of the various centroids. Similarly at any 
free ends of segments we may confine the particle by standard one-dimensional end-point 
conditions. Thus with the caveats about negligible curvatures and torsions of individual 
wires, and negligible wavefunction variations transverse to their longitudinal axes we have 
reduced the quantum mechanics of an array of coupled wires to the quantum mechanics of 
a particle on a graph. 

With the above simplifications an eigenstate of energy E = k2, in the region of a node 
may be written in the form 

(1) 

where ( x , m )  is the coordinate of a point a distance x from the node along wire m, 
m = 1,. . , , M, with M the total number of wires connected to the node in question. 
Adopting the convention that (Ai )  are amplitudes of incoming plane waves and (B j ]  
amplitudes of outgoing waves, the M x M scattering matrix S. associated with the node 
satisfies 

q ( x ,  m) = A,exp(-ikx) + B,exp(ikx) 

where IA) and IB) are the M-component column vectors, the jth components of which 
are respectively A, and E,. With this convention, Sjj is the reflection amplitude r, for 
a particle incident on the node along wire j ,  while Sk,j+x is the amplitude for such a 
particle to be transmitted to wire k. We now proceed by assuming that S is unitary and that 
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the wavefunction is continuous at the node, so that 
lim @ ( x ,  m )  = @(O) 

X - 0  
(3) 

where @(O) is independent of m .  
We first show that these assumptions imply that all the hansmission amplitudes are equal 

and similarly all reflection amplitudes are equal. To this end consider the wavefunction 
q5j(x, m) describing a wave of unit amplitude incident on the node along wire j, which 
satisfies 

@,(x,  j )  = exp(-ikx) + rj exp(ikx) 

& ( x ,  m # j )  = r,, exp(ikx). 
(4) 

Continuity implies 

(5) 
Now we consider a similar state # ( x ,  m )  describing a particle travelling out along wire j. 
Since IA) = S-IIB) = S t l B ) ,  we have 

$j(O, j )  = 1 + r j  = f l j  = ..'= f j - l , j  = f j + I , j  = ... = f M j  . 

r$(x, j) = r; exp(-ikx) + exp(ikx) 

4 j ( x .  m # j )  = t;, exp(-i/cx). 
(6) 

Hence from continuity 
,$(I), j )  = 1 + r; = fjl = . . . = = r;j+l = . . . = t j :M.  (7) 

Expressions (5)-(7) imply that all transmission amplitudes are equal (= f ,  say) and all 
reflection amplitudes are equal (= f - 1 = r ,  say). 

lrI2 + (M - l)ltlz = 1 

r t * + r * r + ( M - 2 ) l t 1 2 = ~ .  

To obtain expressions for r and f ,  one notes that unitarity of S yields 

(8) 

The most general solution to equations (8) with r + 1 = f is 

r + 1 = f = -11 + exp(iEJ(E))] (9) 
1 

M 
where @ ( E )  is an arbitrary real function of the energy E = k2 of the wavefunction. 

We now examine the sum F j  defined by 

Since F j  = ik (Mf  - 2 )  one finds 
i k M ( M t  - 2 )  I- - 

4j (O,  j )  exp(iO(E)) + 1 
F. 

exp(i@(E)) - 1 
exp(iEJ(E)) + 1 

= ikM 

= -kM tan(EJ(E)/2). (11) 
Since this is valid for all j, and any eigenfunction $(x ,  m )  of energy E can be expressed 
as a linear combination of the &(x,  m). we find 
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where V ( E )  = - k M t a n ( B ( E ) / 2 ) .  It is interesting to note that for thecase in which M = 2 
and V ( E )  = U (with U a constant), condition (12) is simply the boundary condition for a 
delta-potential of magnitude U. 

This derivation of the junction condition in terms of stationary states involves the 
function V ( E ) ,  which encodes the detailed physical properties of the junction. In principle 
it may be determined by an analysis of the junction as a limit of a higher dimensional system 
of connected domains. Since the determination of such a limit can at best be contemplated 
numerically we prefer to regard V ( E )  as a definition of the junction used to model specific 
situations. The simplest characterization of a junction is afforded by taking V to be an 
energy independent constant. We regard this as a primitive node model. A simple but 
important consequence is that an arbitrary graph constructed with primitive nodes (and 
standard free end boundary conditions on the stationary-sate wavefunctions) leads to a 
deterministic framework for the energy spectrum of the system. A set of primitive nodes 
may be regarded as a complex node. Complex nodes can also be generated by dressing 
primitive nodes by closed loops. Each increase in complexity of agraph will be accompanied 
by a change in the eiegenenergy spectrum of the system. In this manner we may replace a 
system of junction conditions for a complex node by a single junction condition in which 
the primitive node coupling is renormalized to an energy dependent coupling designed to 
preserve the energy eigenspectrum, as described in [13]. Since the primitive node junction 
condition is therefore basic we shall concentrate on t h i s  aspect in the remaining sections. It 
is useful to note that the junction conditions for a graph constructed out of primitive nodes 
can also be derived from a very general variational procedure. Such a procedure is outlined 
in appendix A. It also follows in a non-hivial manner by a tight-binding discretization of 
the Schrodinger equation on a general graph (see appendix B). Both of these approaches 
arrive at similar conclusions by very different means and strengthen our confidence in the 
legitimacy and significance of condition (12). 

3. Energy levels for a particle trapped near a single M-pointed junction 

We now consider the dispersion relation for a network consisting of M wires each connected 
at one end to a common node and terminated at the other end by a standard fixed-end 
boundary condition. We shall call this arrangement a quantum hydra. Initially we assume 
the wires are all of the same length a. 

To obtain the eigenstates of such a structure, consider first the travelling wave states 
corresponding to an incoming wave along a semi-infinite arm n.  The state in arm m is 
written 

m = n exp(-ikx,) + T, expcix,) 

trim e x p W d  m f n .  

Energy eigenstates of system with fixed-end boundary conditions are a linear 
combination of the above states and in arm m take the form +(xm)  = E, c , $ ~ ( x ~ ) .  Thus 
with +(xm = a)  = 0 we have the M equations 

(13) h ( X m )  = 

0 = CAX' + r , X )  + x CJ", 

n#m 

with m = 1, . . . , M and X = expcia). Solutions c, exist only if det A = 0, where A is 
the M x M mahix with elements A,, = X* + r,X and A,,,,"+ = t,.X. 
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For the case of a primitive junction the determinant of A factorizes as 

detA = [X' + (r - t)XIM-'[X' + (r + (M - l)t)X] (15) 

(16) 

Hence we immediately see that the eigenenergies are grouped into singly degenerate 
and ( M  - 1)-degenerate levels. Solution of (16) yields ka = n a  for the degenerate levels 
and the transcendental equation ka = (n + 1/2)a - 0/2 = (n + 1/2)n + tan-'(V/Mk) for 
the non-degenerate levels. 

We now consider the possibility of evanescent states, which, in the l i t  that the length 
of the arms tends to infinity, decay at large distances from the node. These have the form 
@(x,) = B sinha(a - x,), where D is an imaginary wavevector satisfying E = -a2, and 
B is a normalization constant. Substituting into ( 12) yields 

= (x' - x)~-'(x* + xexp(i0)). 

@(O) = VAsinh(ora) = -AM~cosh(cua) (17) 
from which one obtains 

tanh(ola) = - M a / V .  (18) 

Ignoring solutions corresponding to D 6 0, since the solution with ol = 0 cannot be 
normalized while solutions with D < 0 yield the same wavefunctions as those with D > 0, 
we find no solutions for V > - M / a  and one state for V < - M / a .  Hence for a given 
negative potential V there exists a critical length for the connecting wires, below which 
there is no negativeenergy evanescent state. This analysis is readily generalized to the case 
where the wires have different lengths a,,,, where @(x,) = (A/sinh(aa,,,)) sinh(or(a, - x ) ) ,  
which yields a critical potential V = - x:=l(l/am) above which there are no bound states. 
Remarkably, if just one of the connecting leads is short, then the magnitude of this critical 
potential remains high, even if the remaining leads become infinitely long. At first sight, 
this appears to contradict a standard result of scattering theory, which states that in one 
dimension, a negative potential of arbitrarily small magnitude induces a bound state. The 
reason for this difference is that the presence of the short lead effectively creates a fixed 
end boundary condition in the vicinity of the node, which forces t# to vanish and reduces 
the effect of the scattering potential at the node. 

The high degeneracy present in the eigenvalue spechum of a hydra is of course a direct 
consequence of the permutation symmetry possessed by the node scattering matrix. To 
show that the degeneracy is lifted for structures with scattering mahices of lower symmetry, 
consider for example, an S-matrix of the form 

r T I t  

t T r  

Equation (15) remains valid, but in this case, det A becomes 

[(x' + (r - T ) x ) ~ ( x *  + (r + T - Z~)X)I(X* + ( r  + T + 21)). 

Clearly this structure possesses a twofold degeneracy and from the form of the term in the 
square brackets, possesses a three-fold degeneracy in the l i t  t + T. 
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As a further example we consider the following S-matrix, which is invariant under 
permutations of all the leads except one: 

This S-matrix is of particular interest, becaues for R = 0 it reduces to the beam splitter of 
Shapiro. Now we find 

det A = (r - t)"-'[R(r + (M - 2)t) - (M - l)Tz] 
with an (M - Z)-foId degeneracy. 

4. Arrays of junctions 

Consider now the problem of an infinite array of junctions joined together to form a cubic 
lattice. For the case in which the right hand side of equation (12) is set to zero, an expression 
for the dispersion curve has already been obtained by Avishai and Luck [I]  In this section 
we generalize their analysis to the case V # 0, where the right-hand side of (12) remains 
finite. 

For a given node, let an2 and bn2 be respectively the right-going and left-going wave 
amplitudes immediately to the right of the the chosen node in direction n and an2 and b.2 
be the equivalent amplitudes immediately to the right of the next node on the left. The 
Bloch condition then yields 

an2 = 0.1 exp(iq.u.) (21) 

6.2 = 4 1  exp(iq.u.) (22) 
where qn is the component of the crystal momentum and U, is the lattice spacing in direction 
n. Wavefunction continuity yields 

f = a,2 + bn2 = Q.I exp(iu.) + b,,l exp(-iku.) (23) 
where f is a constant independent of n and k is the wavevector given by E = k2, while 
flux conservation yields 

Solving (21)-(24) gives the relation 
d 

1 sinku, = 2 z(cos(q,u,) - cos(ku,)) . 
k "=I 

For a cubic lattice in which the lattice constant a is the same in all directions, this yields a 
dispersion curve of the form 

When V = 0, equation (26) gives an explicit expression for k and hence E as a function of 
q. but in all other cases we have a transcendental equation that must be solved numerically. 
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5. Conclusion 

We have motivated a particular choice of junction condition that enables one to determine 
the energy spectrum of a particle confined to an arbitrarily complex graph. In particular we 
have argued that the arbitratiness in this junction condition can be understood in terms of 
a renormalization of the graph topology by primitive node vertex insertions. 

For networks composed of semi-infinite wires we have illustrated how amplitudes can 
be parametrized in analogy with the problem of scattering from a delta-function potential. 
We have derived the spectxum of a regular quantum hydra showing that it has a remarkably 
simple form, and have also generalized this to a regular array of junctions. Given the 
intense experimental interest in mesoscopic devices we believe our considerations may be 
relevant to an understanding of those properties that can be modelled in terms of quantum 
mechanics on graphs. 
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Appendix A 

In this appendix we seek to establish a variational principle that will generate Schrijdinger’s 
equation for stationary states p defined on an n-dimensional manifold M but in addition 
satisfy an appropriate boundary condition where several such manifolds join at a common 
junction. (An altemative derivation based on taking the limit of a tight-binding model as 
the distance between sites vanishes is presented in appendix B.) We write the equation in 
the language of exterior forms to facilitate the derivation of these conditions, giving 

(A I )  

where the symbol * denotes the Hodge map associated with the induced Euclidean metric 
on each manifold, E = $ E  and V = $V in terms of any potential function V and the 
stationary-state energy E .  Thus consider a space composed of n-dimensional manifolds 
Mj with boundaries aMj ,  composed by glueing together certain connected components of 
various boundaries. 

We suppose that the stationary states on this network are extrema, for all variations of 
compact support, of the integral 

d * d p  + (E -V)@ * 1 = O  

j 

where 

and the sum j runs over all branches in the network. The ( n  - 1)-form o is a G r a y )  
measure on the junction hypersurfaces, and we have written Aj = Vj -E .  W, is an arbitrary 
real number associated with primitive node J of the network. Taking variations of the 
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complex field $j we have 

If L$j is a variation of compact suppofi on the interior of the j th  component space then 
$j is extremal if 

(A6) d * d@j + (& - v)@, * 1 = 0.  
It follows that for variations with support that include the junctions 

We shall now assume that all exwema of interest are continuous at each junction and 

L$jW = L@r(J) V J ,  j . (As) 

x ( * d @ j  - W j @ j ~ j )  = O .  (AS’) 

hence the general junction condition is 

I 

the junction conditions become 

I 

ForthespecialcasedimM= 1,0= ~ , M I = [ L J , L ~ ] , ~ M ~ = L ~ - L J . @ , ( J ) = @ ( J )  

C{(*d@)j - Wj@l(J) = 0. (A 10) 

where WJ = xj Wj and the sum is over all branches that connect to junction node J .  If 
we write 

d@] = @;&’ (A13 
(no 1-sum implied), in terms of some coordinate x i  on branch j then (*a@)) = @j and 
each condition may be written as 

i 
Z@j(J) = W i @ ( J ) .  (-413) 

Appendix B 

In this appendix we present an alternative derivation of the properties of a point-like node 
by regardin the Schrodinger equation as the continuum limit of a tight-binding equation. 

Let u,=,{[O, L,&) denote the union of M copies of intervals of the real line and define 
Z to be the space generated by identifying the 0 end of each [O, L,], Vfi. thus Z is a one- 
dimensional M-star (having M arms) with a single junction. We are interested in writing 
down SchrMhger’s equation on the space C(T)  where C : Z H R3 is a length preserving 
injective map into ordinary Euclidean space and deriving an appropriate junction condition. 
The approach is based on taking the continuum l i t  of a discrete quantum model based on 
tight-binding techniques. 

2 
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To proceed let us first discretize Z by adopting a mesh consisting of d = Cf=,(N,- 1)+ 
1 points labelled (0, (1, p) ,  (2, p). . . . , ( N p ,  p ) )  for each arm where 0 labels the " n o n  
junction. We call this discretized space II and formulate a discrete linear field theory on II 
in terms of a d-dimensional vector space V with basis 

( I n , d ,  lo)] (B1) 

where p E (1, ..., M )  and n E (1, ..., N,, -1). 
In the above basis, the Hamiltonian operator H possesses matrix elements of the form 

( p , n l H l ~ . n )  = 6 (B2) 

(p,  nl lHIp,  nz) = -v  if nl = nz zk 1, nl,  n2 E (1,. . . , N p  - 1) (B3) 

(OlHlO) = U  (B4) 

(IL, 1lHIO) = --o (BSI 

(p1, nllHIp2. nz) = 0 otherwise. (B6) 
For convenience, we have assumed that H is real and symmetric. 

In the language of tight-binding descriptions, E is the site energy excluding the junction, 
--v the interaction energy of adjacent sites excluding the junction, U is the site energy of 
the junction and --o the interaction of the junction with its M neighbours, 

The eigenvalues E of H are obtained by solving the coupled system 

HI@) =El@) (B7) 

(B8) 

(B9) 

( B W  

i.e. 

E @ ~ , N " - I  = E @ , , , N ~ - I  - V@JL,N,,-Z 

E@@," = e@,,," - W,,+-I -i + p , n + ~ )  

E P p . 1  = €@&,I - V@P;.Z - WO 

where n E P, . . . . Np - 2 )  

In terms of the natural metric on each arm let the common spacing between adjacent 
sites be a. We examine the continuum l i t  as a + 0, d -+ 00 such that UN$ = L,, is 
finite. To this end we introduce the map 

(B 12) 
and decompose it into Q@ and 8, the restrictions to the pth arm and the junction of Z 
respectively 

Q : z x w H e, ( & U )  H Q ( x , a )  

Q,, : w2 H e, { x , u )  H Q(x, a)  

4 : R H e, [a) H $(U) 

( ~ 1 3 )  

( ~ 1 4 )  

@ / = Q " ( u ~ , u )  V//,E(l, ..., M] V t l ~ ( 1 ,  ..., N p - l ]  V U > O  ( ~ 1 5 )  

such that 

po = &a) Va > 0. (BW 
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Thus equations (B8) to (B11) can be written 
E(a)@'"(L, - a ,  a )  = E(u)@"'(L, - a ,  a)  - v(a)@"(Lp - k, a )  ( ~ 1 7 )  

E(a)@'"(x,a) = ~ ( a W m ( X . 4  - v(a)(@'"(x -a,a)+" t a , a ) )  

where 2a < x < L, - 2a (3318) 

( B W  E(a)@'"(a,a) = +)@'"(a,a) - v(a)@'"(k, a )  - w(a)$(a) 

M 

,=I 
E ( Q ) $ ( ~ )  = o(a)$(a) - w ( a ) C @ m ( a , a ) .  WO) 

In order to get a well behaved limit of these equations we shall assume that the following 

E ( U ) = E O + E I U + . . .  (B21) 

€ ( U )  = 6-za1' + E-~u-'  + W O  + cla' + . . . (B22) 
U ( Q )  = I J - Z U - ~  + v-1a-I t voao t via' t . . , (B23 

@ ( a )  = o - z a ~ - ~  + o-la-' + %ao + wla' + . . . ( B W  

O ( Q )  = u-ZaF2+ u-1a-l + Q U O +  Ul4'  t . . . , (B25) 

Laurent expansions about a = 0 exist: 

We proceed to expand @" and $ as a double Taylor series 
az 
2 

@"(x ~ ~ , ~ ) = @ ' ( X , O ) + U ~ ~ @ ' ( X , O ) + - ~ . Z @ ~ ( X , O ) + ~ ~ , @ ~ ( ~ , O )  

(B26) 
For equations (3319) and (3320) involving x = 0, we note that since lim,,w @ * ( x ,  a)  = 

b2 +aba,a.@%o) + za.2@% 0). . . . 

$(a) for all a, this series may be written 
a2 

+?a,@ bZ z P ( O,O)... 

@w, U )  = $CO) + aa,$co) t Ta,Z$(o) + ba,@"(o, 0) + aba,a,,y(o, 0) 

(B27) 

(3328) 
where we assume that a#'(O, 0) = Lim,,w(a,@~(x. 0)) is well defined. Substituting these 
expansions into (B17), (B18), (3319) and (3320) we obtain the following series in a: 

az 
2 

$(a)  = $(O) + aaako) + -a:$(O) f.. I 

O - ~ @ " L , ,  O)(U-Z - 6-d t a-'[(a,,@Y~,, o)(u-, - 6-d + a,@w,, O)(S-~ - 2 ~ ~ )  

( ; p L,, o)(v-2 - E-2)  

l o  

2 
+@YL,,O)(V-~ - E - ' ) ] +  a @ ( 

+a,a,@w,, O ) ( E - ~  - 2 ~ )  + ~ N ( L , ,  o)(f-l - 2 ~ ~ )  

+a:@%. 0) 2 + a,v(L,, o)(t.., - 2 ~ )  
(4nu-2 - E-2) 

+#'(L,, O)(EO + 2!JLl - €0)  , . . = (B29) 
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a -2 4 L l  ~ X , 0 ) ( 2 u - 2 - € - 2 ) + a - ~ [ ( a ~ @ ~ ( X , 0 ) ( 2 u - 2 - E - Z ~ + @ ~ ~ X , 0 ) ( 2 Y - I  - € - I ) ]  

+(a.’@*(., 0)m-Z - 6-2) 

+8(0)(u-1 + 0 - 1  -€-I)]  + ( a a 4  

+ a,v(x, o ) w I  - E - ~ )  2 

+a:@%, 0)u-2 + 4% om0 + 2uo - EO) + . . . = 0 (B30) 1 
n-24(0)(v-2 + 0 - 2  - E-2) + a-’[a,&O)(u-z + 0 - 2  - €4) + a,@”(o, 0)(2lJ-Z - €4) 

2 (O)(U-Z + 0 - 2  - 6-21 

+a.a,y(O, 0)(2U-Z - 6-2) + a.&o)(u-l + 0-1 - 6-1) 
+a:@p(o, 0) 

2 

(4U-2 - E-2) 

2 + a,y(o, O)(ZU-~ - E - ~ )  

+&O)[Eo + ( I k J f ~  - E O ) ]  + .“ = 0 (B31) ) 
( 

+o-2 c p= I a*y(O, 0)) + (an& 

U - ~ & O ) ( M U - ~  - u-2) + U - I  a.8(o)(uo-2 - u-2) + & o ) ( M ~ - ~  - u-l) 

2 0) (MU-2 - U-2) 
M 

+ a,&o)(Mw-, - 0-1) 2 

M M 

p=l P I  
+&O)(E~ +  MU^ - uo) + o-zC a,a,+p(o, 0) + 7 C a;pyo, 0) 

+U-l Caz@”(o,O) + . I .  = 0. @32) 

From (B30) we see that the term in a-z will vanish if 2u-2 = e-2 and the term in a-I 
will vanish if 2u-I = 6-1. Thus we recover SchrGdinger’s equation with 2uo = eo and 

) 
M 

p=1 

”-2 = hl 
2m- 

@33) 
The higher-order terms can be made to vanish for appropriate choices of higher-order 
derivatives in the expansions. From (B29) we see that the term in a-2 will vanish if 

@ W p r  0) = 0 (B34) 
which we recognize as a standard boundary condition. From (B31) we see that the term 
in a-2 will vanish if 0-2 = U-2,  and the term in a-l will vanish if w - ~  = w - ~ ,  Thus 
Schriidinger’s equation extends to the junction if 00 = uo 

- E 2  
z;;;a:@”(x.o) = EO@’(X,O). 

4 2  
zma;@fi(o,o) = E ~ ) ( O ) .  @35) 
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From (B32) we see that the term in a-' will vanish if Mw-2 = 0-2. The term in a-' now 
gives us the boundary condition for the junction. If we write Zm(Mo- ,  - o-,)/h* = W 
then we require 

w & o ) + ~ a , @ Y o , o ) = o .  @36) 

The higher-order terms can be made to vanish for appropriate choices of higher-order 
derivatives in the expansion. Equation (B33) together with the boundary conditions (B34) 
and (B36) are sufficient to determine the eigenvalues E in terms of W and the lengths (LJ. 
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